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Linear boundary value problems

We consider a Poisson problem
Dirichlet boundary condition:

Ω
Γ

{

−∆ u(x) = g(x), x ∈ Ω,

u(x) = f (x), x ∈ Γ.

However, the solution techniques can be extended to linear boundary value
problems of the form

{

A u(x) = g(x), x ∈ Ω,

B u(x) = f (x), x ∈ Γ,
(BVP)

where Ω is a domain in R
2 or R3 with boundary Γ. For instance:

• The equations of linear elasticity.

• Stokes’ equation.

• Helmholtz’ equation (at least at low and intermediate frequencies).

• Time-harmonic Maxwell (at least at low and intermediate frequencies).
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Example applications

(a) (b)

(c)

(a) The Wraith Virginia-class submarine

(b) Kayani, A., Khoshmanesh, K., Ward, S., Mitchell, A., and Kalantar-zadeh, K. Optofluidics incorporating actively controlled micro- and

nano-particles. In Biomicrofluidics, vol. 6.
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Boundary value problem

We consider a Poisson problem with
Dirichlet boundary condition:

Ω
Γ

{

−∆ u(x) = g(x), x ∈ Ω,

u(x) = f (x), x ∈ Γ.
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Boundary value problem

We consider a Poisson problem with
Dirichlet boundary condition:

Ω
Γ

{

−∆ u(x) = g(x), x ∈ Ω,

u(x) = f (x), x ∈ Γ.

Let’s write u(x) = v(x) + w(x)
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Boundary value problem

We consider a Poisson problem with
Dirichlet boundary condition:

Ω
Γ

{

−∆ u(x) = g(x), x ∈ Ω,

u(x) = f (x), x ∈ Γ.

Let’s write u(x) = v(x) + w(x) where v(x) is the solution of

−∆ v(x) = ĝ(x), x ∈ R
2,

and w(x) is solution of

{

−∆w(x) = 0, x ∈ Ω,

w(x) = f (x)− v(x), x ∈ Γ.

The function v(x) is called the particular solution and w(x) is called the
homogeneous solution.
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The fundamental solution

For a given point charge x0 ∈ R
2, the

solution of

−∆u(x) = δ(x− x0), x ∈ R
2

is

u(x) = −
1

2π
log |x− x0|.
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The fundamental solution

For a given point charge x0 ∈ R
2, the

solution of

−∆u(x) = δ(x− x0), x ∈ R
2

is

u(x) = −
1

2π
log |x− x0|.

The fundamental solution G(x, y) is
given by

G(x, y) = −
1

2π
log |x− y|.

This allows us to move the point
charge around.
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The particular solution

Ω
Γ

Recall, v(x) satisfies
−∆ v(x) = ĝ(x), x ∈ R

2,

where

ĝ(x) =

{

g(x) for x ∈ Ω
0 for x ∈ Ωc
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The particular solution

Ω
Γ

Recall, v(x) satisfies
−∆ v(x) = ĝ(x), x ∈ R

2,

where

ĝ(x) =

{

g(x) for x ∈ Ω
0 for x ∈ Ωc

Using the fundamental solution, the particular solution is given by

v(x) =

∫

Ω

G(x, y)g(y)dA(y).
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The homogeneous solution

Recall, w(x) is the solution to the boundary value problem with homogeneous
partial differential equation; i.e.

{

−∆w(x) = 0, x ∈ Ω,

w(x) = f (x)− v(x) = f̂ (x), x ∈ Γ.

It is tempting to express w(x) as

w(x) =

∫

Γ

G(x, y)σ(y)dl(y)

where σ(y) is an unknown boundary charge distribution.
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The homogeneous solution

Recall, w(x) is the solution to the boundary value problem with homogeneous
partial differential equation; i.e.

{

−∆w(x) = 0, x ∈ Ω,

w(x) = f (x)− v(x) = f̂ (x), x ∈ Γ.

It is tempting to express w(x) as

w(x) =

∫

Γ

G(x, y)σ(y)dl(y)

where σ(y) is an unknown boundary charge distribution.

Enforcing the boundary condition yields the following first kind Fredholm
equation

∫

Γ

G(x, y)σ(y)dl(y) = f̂ (x) x ∈ Γ.
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The spectrum
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The minimum eigenvalue in absolute value is 2.06e − 04.
The maximum eigenvalue in absolute value is 6.39e − 1.
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The double layer kernel

For a point y on the boundary of a
curve, the double layer kernel

D(x, y) = ∂νyG(x, y)

is a solution of

−∆xw(x) = δ(x− y), x ∈ R
2.
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A second kind integral equation

Ω
Γ

Consider the problem

−∆w(x) = 0, x ∈ Ω,

w(x) = f̂ (x), x ∈ Γ.

The solution can be represented as a double layer potential

s(x) =

∫

Γ

∂νyG(x, y)σ(y)ds(y), x ∈ Ω,

where νy is the outward normal at y and G(x, y) is the fundamental solution

G(x, y) = −
1

2π
log |x− y|.

Then the boundary charge distribution σ satisfies the boundary integral
equation

1

2
σ(x) +

∫

Γ

∂νyG(x, y)σ(y)ds(y) = f̂ (x)
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The spectrum
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Variable coefficient PDEs

Ω

Consider the free space variable coefficient Poisson problem

∇ · (a(x)∇u(x)) = f (x) for x ∈ R
2

where a(x) > 0 for x ∈ Ω and the support of
f (x) is Ω.
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Variable coefficient PDEs

Ω

Consider the free space variable coefficient Poisson problem

∇ · (a(x)∇u(x)) = f (x) for x ∈ R
2

where a(x) > 0 for x ∈ Ω and the support of
f (x) is Ω.

Expanding the differential operator (plus some algebra) results in the following
form of the PDE;

∆u(x) +
∇a(x) · ∇u(x)

a(x)
=

f (x)

a(x)
for x ∈ R

2.
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Variable coefficient PDEs

Ω

Consider the free space variable coefficient Poisson problem

∇ · (a(x)∇u(x)) = f (x) for x ∈ R
2

where a(x) > 0 for x ∈ Ω and the support of
f (x) is Ω.

Expanding the differential operator (plus some algebra) results in the following
form of the PDE;

∆u(x) +
∇a(x) · ∇u(x)

a(x)
=

f (x)

a(x)
for x ∈ R

2.

We let u(x) =
∫

Ω
G(x, y)σ(y)dA(y) and plug this expression into the PDE.

σ(x) +

∫

Ω

∇a(x) · (∇xG(x, y))

a(x)
σ(y)dA(y) =

f (x)

a(x)
for x ∈ R

2.
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Variable coefficient PDEs

Ω

Consider the free space variable coefficient Poisson problem

∇ · (a(x)∇u(x)) = f (x) for x ∈ R
2

where a(x) > 0 for x ∈ Ω and the support of
f (x) is Ω.

Expanding the differential operator (plus some algebra) results in the following
form of the PDE;

∆u(x) +
∇a(x) · ∇u(x)

a(x)
=

f (x)

a(x)
for x ∈ R

2.

We let u(x) =
∫

Ω
G(x, y)σ(y)dA(y) and plug this expression into the PDE.

σ(x) +

∫

Ω

∇a(x) · (∇xG(x, y))

a(x)
σ(y)dA(y) =

f (x)

a(x)
for x ∈ R

2.

10:30 - 11:15
Mike O’Neil

Integral equation methods for the Laplace-Beltrami problem
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Definition of quasi-periodic scattering

d

ui

x

y

Ω

• Let Ω ⊂ R
2 denote one obstacle. Then the collection of obstacles is

expressed as ΩZ = {x : (x + nd , y) ∈ Ω for some n ∈ Z}.

• The obstacles are hit by an incident plane wave uinc = eik·x where |k | = ω.

• Our goal is to find the total field utotal = uinc + u.

• Utilize the fact that each part of the field is quasi-periodic:

ie. u(x + d , y) = αu(x , y) where α = eiκ
id denotes the Bloch phase.
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Differential equation

d

ui

x

y

Ω

(∆ + ω2)u(x) = 0 x ∈ R
2 \ ΩZ

u(x) = −u
inc(x) x ∈ ∂ΩZ

u ‘radiative′ as y → ±∞
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Single body scattering

Consider the problem

(∆ + ω2)u(x) = 0 x ∈ R
2 \ Ω

u(x) = −uinc(x) x ∈ ∂Ω
u ‘radiative′ far from Ω
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Single body scattering

Consider the problem

(∆ + ω2)u(x) = 0 x ∈ R
2 \ Ω

u(x) = −uinc(x) x ∈ ∂Ω
u ‘radiative′ far from Ω

The solution can be represented as a double layer potential

u(x) =

∫

∂Ω

∂νGω(x, y)τ (y)ds(y), x ∈ R \ Ω,

where ν is the outward normal and Gω(x, y) is the fundamental solution

Gω(x, y) =
i

4
H

(1)
0 (ω|x− y|).
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Single body scattering

Consider the problem

(∆ + ω2)u(x) = 0 x ∈ R
2 \ Ω

u(x) = −uinc(x) x ∈ ∂Ω
u ‘radiative′ far from Ω

The solution can be represented as a double layer potential

u(x) =

∫

∂Ω

∂νGω(x, y)τ (y)ds(y), x ∈ R \ Ω,

where ν is the outward normal and Gω(x, y) is the fundamental solution

Gω(x, y) =
i

4
H

(1)
0 (ω|x− y|).

Then the boundary charge distribution τ satisfies the boundary integral
equation

1

2
τ (x) +

∫

∂Ω

∂νGω(x, y)τ (y)ds(y) = −u
inc(x)
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The standard way

d

ui

x

y

Ω

Use same integral equation as before but replace Gω(x, y) by

Gω,QP(x) :=
∑

m∈Z

αm
Gω(x−md) where α is the Bloch phase.

This has some problems...
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One approach to solving the periodic problem

x

y
u(  )x

ξξ
τ

L R

Ω

Let the solution be represented as a double layer potential plus a quasi-periodic
potential

u(x) =

∫

∂Ω

∂νGω(x, y)τ (y)ds(y),+uQP [ξ].

New condition: vanishing ‘discrepancy’

{

uL − α−1
uR = 0

unL − α−1
unR = 0

L. Greengard and A. Barnett (2011)
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One approach to solving the periodic problem

x

y
u(  )x

ξξ
τ

L R

Ω

The discretization of the resulting integral equations leads to the following
(N +M)× (N +M) linear system

[

A B

C Q

] [

τ
ξ

]

=

[

−uinc

0

]

,

where A results from the discretization of the double layer kernel, B, C, and Q

are used to enforce the new boundary conditions.

L. Greengard and A. Barnett (2011)



Problem Statement Problem formulation Scattering Stokes’ flow Numerical approximations Fast direct solvers Summary

A fast quasi periodic solver

d

ui

x

y

Ω

[

A B

C Q

] [

τ
ξ

]

=

[

−uinc

0

]

Instead of directly inverting the matrix, we can compute the solution via a
2× 2 block solve.

ξ = (Q− CA
−1

B)−1
A

−1
u
inc

τ = A
−1

u
inc − A

−1
Bξ
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A fast quasi periodic solver

d

ui

x

y

Ω

[

A B

C Q

] [

τ
ξ

]

=

[

−uinc

0

]

Instead of directly inverting the matrix, we can compute the solution via a
2× 2 block solve.

ξ = (Q− CA
−1

B)−1
A

−1
u
inc

τ = A
−1

u
inc − A

−1
Bξ

Note: A−1 need only be computed once independent of the number of incident
angles.
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Problem statement

Ω

Γ

−µ∆u+∇p = fves x ∈ Ω

∇ · u = 0 x ∈ Ω

u = 0 x ∈ Γ

where p denotes the pressure and µ denotes the viscosity.

Vesicle movie
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Classic periodizing approach

Ω

Γ

The velocity field can be expressed as

u(x) = [DP
UτU ](x)− [DP

DτD ](x) + Sfves

=

∫

U

D
P(x, y)τU(y)dsy +

∫

D

D
p(x, y)τD(y)dsy + Sfves

where
D

p =
∑

n∈Z

D(x, y+ nd), d1 = p, d2 = 0,

and p is the period of the flow.

Then τ =

[

τU

τD

]

satisfies the following integral equation

(

−
1

2
I +DP

)

τ = f

for f = −

[

Sfves,U
Sfves,D

]

.
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Periodizing scheme

We make the ansatz that the
velocity can be represented by

u(x) = [Dl
UτU ](x) + [Dl

DτD ](x) + Sfves +
M
∑

m=1

cmφm(x)

where φm = S(x, ym) a Stokeslets charge, {ym}
M
m=1 are a collection of proxy

points, and Dl denotes the local copies of D given by

[Dl
τ ](x) =

1
∑

n=−1

D(x, y + nd).
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Periodizing scheme

We make the ansatz that the
velocity can be represented by

u(x) = [Dl
UτU ](x) + [Dl

DτD ](x) + Sfves +
M
∑

m=1

cmφm(x)

where φm = S(x, ym) a Stokeslets charge, {ym}
M
m=1 are a collection of proxy

points, and Dl denotes the local copies of D given by

[Dl
τ ](x) =

1
∑

n=−1

D(x, y + nd).

To enforce the periodicity of the solution, we require

uL − uR = 0

T(u, p)L − T(u, p)R = 0

where T denotes the traction operator.
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Periodizing scheme

We make the ansatz that the
velocity can be represented by
u(x) = [Dl

UτU ](x) + [Dl
DτD ](x) + Sfves

+
∑M

m=1 cmφm(x).

Enforcing the no slip boundary condition on the upper and lower surfaces
results in the following integral equations

(−
1

2
I +Dl

UU )τU +Dl
UDτD +

M
∑

m=1

cmφm|U = −Sfves |U

Dl
DUτU + (−

1

2
I +Dl

DD)τD +
M
∑

m=1

cmφm|U = −Sfves |D
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Periodizing scheme

We make the ansatz that the
velocity can be represented by
u(x) = [Dl

UτU ](x) + [Dl
DτD ](x) + Sfves

+
∑M

m=1 cmφm(x).

Enforcing the no slip boundary condition on the upper and lower surfaces
results in the following integral equations

(−
1

2
I +Dl

UU )τU +Dl
UDτD +

M
∑

m=1

cmφm|U = −Sfves |U

Dl
DUτU + (−

1

2
I +Dl

DD)τD +
M
∑

m=1

cmφm|U = −Sfves |D

In block matrix form,

[A B]

[

τ

c

]

= f.
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Periodizing scheme

We make the ansatz that the
velocity can be represented by
u(x) = [Dl

UτU ](x) + [Dl
DτD ](x) + Sfves

+
∑M

m=1 cmφm(x).

Enforcing the periodicity conditions (and after lots of cancellation) yields the
following integral equations

(D+1
LU −D−1

RU )τU + (D+1
LD −D−1

RD)τD +
M
∑

m=1

cm(φm,L − φm,R) = −
(

S+1
L,ves − S−1

R,ves

)

fves

(T +1
LU − T −1

RU )τU + (T +1
LD − T −1

RD )τD +
M
∑

m=1

cm(φm,L − φm,R)T = −
(

D+1
L,ves −D−1

R,ves

)

fves
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Periodizing scheme

We make the ansatz that the
velocity can be represented by
u(x) = [Dl

UτU ](x) + [Dl
DτD ](x) + Sfves

+
∑M

m=1 cmφm(x).

Enforcing the periodicity conditions (and after lots of cancellation) yields the
following integral equations

(D+1
LU −D−1

RU )τU + (D+1
LD −D−1

RD)τD +
M
∑

m=1

cm(φm,L − φm,R) = −
(

S+1
L,ves − S−1

R,ves

)

fves

(T +1
LU − T −1

RU )τU + (T +1
LD − T −1

RD )τD +
M
∑

m=1

cm(φm,L − φm,R)T = −
(

D+1
L,ves −D−1

R,ves

)

fves

In block matrix form,

[C Q]

[

τ

c

]

= g.
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Periodizing scheme

We make the ansatz that the
velocity can be represented by
u(x) = [Dl

UτU ](x) + [Dl
DτD ](x) + Sfves

+
∑M

m=1 cmφm(x).

So the full integral equation system that needs to be solve to find the
unknowns τ and c is

[

A B

C Q

] [

τ

c

]

=

[

f

g

]

.

NOTE: Upon discretization, this system is not square and is not full rank.
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Block solve

The solutions to

[

A B

C Q

] [

τ

c

]

=

[

f

g

]

are given by

c = −S
†(g− CA

−1
f)

τ = A
−1

f − A
−1

Bc,

where S = Q− CA−1B is the matrix often referred to as the Schur
complement.

Recall: A = A0 + A−1 + A1 where A−1 + A1 is low rank.
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The key for numerical approximations: Quadrature

Consider the integrable function f (x) on an interval I . The set of points
{xj}

N
j=1 and weights {wj}

N
j=1 satisfying

∫

I

f (x)dx ∼
N
∑

j=1

f (xj )wj

are called a quadrature rule.
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The key for numerical approximations: Quadrature

Consider the integrable function f (x) on an interval I . The set of points
{xj}

N
j=1 and weights {wj}

N
j=1 satisfying

∫

I

f (x)dx ∼
N
∑

j=1

f (xj )wj

are called a quadrature rule.

Quadrature for integral operators is challenging!

Th 4:00 - 4:45
Efficient and Accurate Discretization of Singular Integral Operators on Surfaces

James Bremer

F 10:30 - 11:15
On the solution of the biharmonic equation on regions with corners

Kirill Serkh
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The particular solution

Ω
Γ

Recall, the particular solution is given by

v(x) =

∫

Ω

G(x, y)g(y)dA(y).

Applying an appropriate quadrature rule, the particular solution can be
approximated by

v(x) ∼
N
∑

j=1

G(x, yj )g(yj )wj .
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The particular solution

Ω
Γ

Recall, the particular solution is given by

v(x) =

∫

Ω

G(x, y)g(y)dA(y).

Applying an appropriate quadrature rule, the particular solution can be
approximated by

v(x) ∼
N
∑

j=1

G(x, yj )g(yj )wj .

The evaluation of this sum can be accelerated with methods such as the FMM.

11:30 - 12:15
Adaptive grids for embedded integral equation based solvers

Travis Askham
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The homogeneous solution

Ω
Γ

Consider the problem

−∆w(x) = 0, x ∈ Ω,

w(x) = f̂ (x), x ∈ Γ.

Recall the solution can be represented as a double layer potential

w(x) =

∫

Γ

∂νyG(x, y)σ(y)ds(y), x ∈ Ω,

where νy is the outward normal at y and G(x, y) is the fundamental solution

G(x, y) = −
1

2π
log |x− y|.

Then the boundary charge distribution σ satisfies the boundary integral
equation

1

2
σ(x) +

∫

Γ

∂νyG(x, y)σ(y)ds(y) = f̂ (x)
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How do you discretize integral equations?

To discretize the integral equation using a Nyström method, pick an
appropriate quadrature to approximate the integral. Then

f̂ (x) =
1

2
σ(x) +

∫

Γ

∂νyG(x, y)σ(y)ds(y)

∼
1

2
σ(x) +

N
∑

j=1

∂νxj
G(x, xj )σ(xj )wj

Looking for the solution at the quadrature nodes and forcing the approximation
to hold at these locations leads to a linear system where the ith row is given by

f̂ (xi ) =
1

2
σ(xi ) +

N
∑

j=1

∂νxj
G(xi , xj )σ(xj )wj
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Model problem

Upon discretization, we have to solve a linear system of the form

Aφ = (
1

2
I+D)σ = f̂,

where D is a matrix that approximates the integral operator

∫

Γ

∂νyG(x, y)σ(y)ds(y).

Properties of A:

• Dense matrix.

• Size is determined by the number of discretization points.

• Data-sparse/structured matrix.
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What does it mean for a matrix to be structured?

Roughly speaking, a matrix is structured if its off-diagonal blocks are low rank.

What do mean by low rank?
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What does it mean for a matrix to be structured?

Roughly speaking, a matrix is structured if its off-diagonal blocks are low rank.

What do mean by low rank?

Let M be an m × n matrix where m ≤ n.

The Singular Value Decomposition (SVD) of M is a matrix factorization

M = UΣV
∗

where U and V are square unitary matrices and Σ is an m× n matrix with only
positive real diagonal entries σj , j = 1, . . . ,m.
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What does it mean for a matrix to be structured?

Roughly speaking, a matrix is structured if its off-diagonal blocks are low rank.

What do mean by low rank?

Let M be an m × n matrix where m ≤ n.

The Singular Value Decomposition (SVD) of M is a matrix factorization

M = UΣV
∗

where U and V are square unitary matrices and Σ is an m× n matrix with only
positive real diagonal entries σj , j = 1, . . . ,m.

The values σj for j = 1, . . . ,m are called the singular values.

The ǫ-rank of a matrix is the number k of singular values greater than ǫ.

A matrix is numerically low rank if k << m.
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Is the BIE data sparse?

Γτ

A(Iτ , I
c
τ )

The contour Γ. The matrix A.
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Is the BIE data sparse?

Singular values of A(Iτ , I
c
τ )
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To precision 10−10, the matrix A(Iτ , I
c
τ ) has rank 29.
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Is the BIE data sparse?

Γτ

Γβ

A(Iτ , Iβ)

The contour Γ. The matrix A.
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Is the BIE data sparse?

Singular values of A(Iτ , Iβ)
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To precision 10−10, the matrix A(Iτ , Iβ) has rank 12.
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Incomplete literature review — direct solvers based on data-sparsity:

1991 Data-sparse matrix algebra / wavelets, Beylkin, Coifman, Rokhlin, et al

1993 Fast inversion of 1D operators V. Rokhlin and P. Starr

1996 scattering problems, E. Michielssen, A. Boag and W.C. Chew,

1998 factorization of non-standard forms, G. Beylkin, J. Dunn, D. Gines,

1998 H-matrix methods, W. Hackbusch, B. Khoromskijet, S. Sauter, . . . ,

2000 Cross approximation, matrix skeletons, etc., E. Tyrtyshnikov.

2002 O(N3/2) inversion of Lippmann-Schwinger equations, Y. Chen,

2002 “Hierarchically Semi-Separable” matrices, M. Gu, S. Chandrasekharan.

2002 (1999?) H
2-matrix methods, S. Börm, W. Hackbusch, B. Khoromskijet,

S. Sauter.

2004 Inversion of “FMM structure,” S. Chandrasekharan, T. Pals.

2004 Proofs of compressibility, M. Bebendorf, S. Börm, W. Hackbusch, . . . .

2006 Accelerated nested diss. via H-mats, L. Grasedyck, R. Kriemann, S. LeBorne

[2007] S. Chandrasekharan, M. Gu, X.S. Li, J. Xia. [2010], P. Schmitz and
L. Ying.

2010 construction of A−1 via randomized sampling, L. Lin, J. Lu, L. Ying.

Additional contributors: Ambikasaran, Bremer, Corona, Darve, Greengard, Ho, Martinsson,

Michielssen, Rahimian, Zorin
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Th 2:30 - 3:15
A fast direct solver for boundary value problems on locally perturbed geometries

Yabin Zhang
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Scattering matrix: Trefoil

Consider a Dirichlet boundary value problem
on the trefoil domain Ω with the
wavenumber κ chosen so that the domain
is approximately 1× 3× 3 wavelengths
in size. The tolerance is set to ε = 1.0× 10−9.
and 8th order quadrature is used.

Ntris N EN T Nout × Nin

16 832 6.73× 10−04 1.17× 10+00 754 × 737
64 3 328 2.33× 10−06 3.78× 10+01 939 × 910

256 13 312 2.59× 10−08 3.61× 10+02 945 × 917
1 024 53 248 2.47× 10−11 2.55× 10+03 948 × 918
4 096 212 992 - 2.83× 10+04 949 × 921

Examples are from “A high-order accelerated direct solver for non-oscillatory integral

equations on curved surfaces,” with J. Bremer, and P.G. Martinsson.
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Scattering Matrix: Corners and edges

Consider a Neumann boundary value
problem on the deformed cube Ω with
a fixed wavenumber κ = π/2 making
the domain approximately 3.46 wavelengths in
diameter.

Ntris N E T Nout × Nin

192 21 504 2.60 × 10−08 6.11 × 10+02 617× 712
432 48 384 2.13 × 10−09 1.65 × 10+03 620× 694
768 86 016 3.13 × 10−10 3.58 × 10+03 612× 685

ε = 1.0× 10−10 12th order quadrature

Examples are from “A high-order accelerated direct solver for non-oscillatory integral

equations on curved surfaces,” with J. Bremer, and P.G. Martinsson.
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Free space scattering

Multiple incident waves
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The FMM + GMRES takes one hour (248 iterations) to solve for the densities
for one incident wave.
The fast direct solver takes 19.1 minutes to solve 200 densities.
(4.1 minutes of precomputation and 15 minutes for the block solves.)
Example from “A fast direct solver for quasi-periodic scattering problems,” with A.

Barnett, 2013.
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Stokes flow

Example from “A fast algorithm for simulating multiphase flows through periodic

geometries of arbitrary shape,” with G. Marple, A. Barnett, and S. Veerapaneni, 2016.
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Summary and concluding remark

Summary

• When a Green’s function is available, constant coefficient PDEs can be
reduced to solving a boundary integral equation and computing two
convolutions.

• Variable coefficient PDEs can be recast as a volume integral equation.

• Well-conditioned integral equations may not be readily available but they
can be designed.

• A variety of fast algorithms are available for both convolution and
inversion.

Concluding remark
The field of fast algorithms for integral equations is young. Expect to see more
exciting work from this community.
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